High performance textile structures for composites through open reed weaving

ITMA Research and Innovation Speakers Platform
November 2015, Milan

Christopher Lenz, Thomas Gries
Content

Overview

• Introduction
• Principle and potential of open reed weaving
• Integral reinforced fabrics
• Triaxial fabrics
• Shear reinforced fabrics for stringer elements
• Summary
Overview

- Introduction
- Principle and potential of open reed weaving
- Integral reinforced fabrics
- Triaxial fabrics
- Shear reinforced fabrics for stringer elements
- Summary
Textile design according to load paths

- Fiber properties highly direction depend
- Best mechanical properties in fiber direction
- Small angle deviation leads to significant performance drop

→ **Approach: Tailored textiles**
- Fiber placement along load paths
- High material and weight efficiency
- Suitable for large scale production

Mechanical properties depending on angle deviation

Reference: Cherif
Introduction

Examples: Tailored textiles technologies

- Most common: Placement technologies
- Example: Tailored Fiber Placement

References: ITA, Laystitch
Introduction

Examples: Tailored textiles technologies

- Most common: Placement technologies
- Example: Fiber Patch Placement

References: Geßler, Coqswell
Introduction

Examples: Tailored textiles technologies

• Most common: Placement technologies
• Example: Dry Fiber Placement

• Main limitation: Low production rate due to additive principle

References: Dell'Anno, Geßler
Overview

• Introduction
• Principle and potential of open reed weaving
• Integral reinforced fabrics
• Triaxial fabrics
• Shear reinforced fabrics for stringer elements
• Summary
Principle and potential of open reed weaving

Open Reed Weaving (ORW)

- Principle of function integration
 - Introduction of two additional yarn systems
 - Angle of additional yarns adjustable

Reference: ITA
Principle and potential of open reed weaving

ORW process
Principle and potential of open reed weaving

Application in composites

• High potential for efficient preform production
 – Saving of production steps and waste in preforming
 – Reinforcement yarns can be placed according to load paths

• Product examples
 – Local reinforcements
 – Triaxial fabric
 – Multiaxial profile reinforcement

Reference: ITA
Content

Overview

- Introduction
- Principle and potential of open reed weaving
- Integral reinforced fabrics
- Triaxial fabrics
- Shear reinforced fabrics for stringer elements
- Summary
Integral reinforced fabrics

Potential and need for research

- Single step production of integral reinforced fabrics
 - Load tapes
 - Hole reinforcements
 - Force transmission points
- Reducing expensive waste and productions steps
- Lack of research: new textile structure to be considered in product design processes
 - Component design
 - Weave design
 - Process technology
 - Production planning
Product design

- No design standards for locally reinforced textiles
- Limited design possibilities

→ Development of product design tool
 - Identification of possible part designs
 - Economical comparison to conventional preform design

Reference preform

Definition of suitable reference

ORW-concept

Identification of possible ORW-concepts

Complex example part

Reference: ITA
Integral reinforced fabrics

Mechanical evaluation

• Notching
 – Reducing of local load peaks
 – Improvement in strength of up to 60 %

• Local force transmission point
 – Elimination weakness point at insert
 – Improvement of up to 36 %

• Hole bearing
 – Occurring at screws and bolts
 – Improvement of maximum strength up to 80 %

Reference: ITA
Integral reinforced fabrics

Further research demand

- Reinforcement design
 - Derivation of general design rules
 - Determination of “engineer’s formulas”
 - Establishing of FEA model

- Process technology
 - Tribological adaption of guiding elements
 - Improvement of yarn length tensioning

- Economical evaluation
 - Determination of profound knowledge regarding productivity
 - Evaluation of economic potential for industrial applications

Reference: ITA
Overview

• Introduction
• Principle and potential of open reed weaving
• Integral reinforced fabrics
• Triaxial fabrics
• Shear reinforced fabrics for stringer elements
• Summary
Triaxial fabrics

Motivation and approach

- Due to limited needle shifting, only small areas of multiaxial fabric possible
- Load path interrupted

- **Approach:** realizing an overlapping of two yarn systems

Reference: ITA
Triaxial fabrics

Product potential

• “Triaxial” fabric:
 – Continues load path in bias direction
 – Angle of additional reinforcement direction adjustable

• Possible application: multilayer laminates
 – Quasi-isotropic laminates such as [0/90/+45/-45/90/0°]
 – Saving of waste and preforming cost by saving +/-45 fabric layer

Reference: ITA
Triaxial fabrics

Experimental verification

• Well-known principle
 – Adhesive joints
 – Repairing of FRP
 – Short fibre reinforcements

• Calculated necessary overlapping length: 16.28 mm

• Conducting three-point-bending tests
 – Varying overlapping length
 – Carbon and glass tested
 – Reference samples
 ▪ [0/90°] fabrics
 ▪ [0/90/45°] fabric with continuous reinforcement

\[F = \frac{\tau_K \times b}{\sqrt{\frac{1}{2} \times \frac{1}{E_t} \times \frac{G_K}{t_K}}} \]

Formula for calculation overlapping length of adhesive joints [Schuermann]

References: Schuermann, ITA
Experimental verification

• Results

![Graph showing bending strength vs. overlapping length for different materials including Carbon, Glass, Reference, and Reinforced Reference. The Y-axis represents bending strength in MPa, ranging from 0 to 500, and the X-axis represents overlapping length in millimeters, ranging from 0 to 40. The graph includes error bars for each data point.](graph.png)
Further research demand

- Fabric design
 - Determination of necessary overlapping lengths
 - Rules for weave design
- Process technology
 - Challenging yarn tension control
 - Tribological improvement of yarn guidance
- Application
 - Detailed mechanical evaluation
 - Economic evaluation
 - Comparison to reference materials

Reference: ITA
Overview

• Introduction
• Principle and potential of open reed weaving
• Integral reinforced fabrics
• Triaxial fabrics
• Shear reinforced fabrics for stringer elements
• Summary
Shear reinforced stringer elements

Motivation

- Application of stringers
 - Stiffening of shell elements
 - Mostly used for airplane and train shell elements
- Conventional production of stringers
 - Pultrusion → Limitation in fibre angle
 - Braiding → Limitation in productivity
 - Weaving → Limitation in fibre angle

References: Boeing, Vom Baur
Shear reinforced stringer elements

Potential of using ORW for stringer elements

• Using multiaxial reinforcement yarns to introduce a shear reinforcement
• Due to small component width, high yarn shifts not necessary
→ ORW suitable for producing stringer elements up to 2 m length

Reference: ITA
Shear reinforced stringer elements

Experimental study

- Design of reinforcement stringer
- Establishing production process

Fabric production

Introducing reinforcement yarns

Reference: ITA
Shear reinforced stringer elements

Experimental study

- Infusion of samples in RTM process
- Testing in 4-point-bending
- Economical evaluation
- Comparison to stringer made of conventional fabric

Reference: ITA
Overview

• Introduction
• Principle and potential of open reed weaving
• Integral reinforced fabrics
• Triaxial fabrics
• Shear reinforced fabrics for stringer elements
• Summary
Summary

High performance composite structures through ORW

• ORW offers combination of fabric production and fiber placement
• Design flexibility of ORW allows placement along load paths
• High potential for highly integrated parts
• Potential shown for different application cases
 – Local reinforcements
 – Triaxial fabrics
 – Stringer elements
• Further steps necessary for industrial application
 – Improved fabric design
 – Proof of economical advantages
Thank you for your kind attention

Christopher Lenz
Head of research group “2D reinforcement fabrics”
Christopher.Lenz@ita.rwth-aachen.de