Quality-assured mass production of NCF through an intelligent production machine

M. Haeske1, B. Abbas2, T. Fuertjes3, T. Gries1

1Institute of Textile Technology (ITA) of RWTH Aachen University
2Assoc. Institute for Management Cybernetics e.V. (IfU)
3Chair of Production Metrology and Quality Management (WZL) of RWTH Aachen University
Product

• Increasing use of non-crimp fabric (NCF)
• Large series production of components
• No-standardized quality requirements from different companies / industries

Reference:
[1]: http://www.business-on.de
[2]: http://www.auto-bild.de
[3]: http://www.boldmethod.com
Outline

1. Introduction and Motivation
2. Approach for a quality control system
3. Machine modifications
4. Investigation on the pressure roll
5. Conclusion and Summary
Outline

1. Introduction and Motivation
2. Approach for a quality control system
3. Machine modifications
4. Investigation on the pressure roll
5. Conclusion and Summary
Introduction

NCF Production
- High productivity
- Manual adjustment of production parameters
 - Tension of stitching yarn
 - Tension of reinforcement fibers
 - Preload of pressure roll

Typical set-up of NCF fabric

LIBA Copcentra Max 3 machine

Reference:
Karl Mayer LIBA GmbH
Introduction

NCF Production

- Pressure roll is used to homogenize the fabric and to reduce gaps
- Manually adjusted pre-load on springs
Motivation

Errors within the production process
• thread tension prone to error
• possible inhomogeneous texture outcome
• angular deviation
• errors within intermediate layers
• foreign object

Deficits of the production process
• non-existing quality monitoring of the production process
• no detection of errors within intermediate layers
• no continuous record keeping of texture quality
• mainly manual on sight quality inspection
Motivation

Research Project: AiF Auto-NCF

Goals:
• Higher quality of the product
• Less quality cost
 – Quick adjustment of optimum machine settings
 – Lower reject rate
 – Detailed „error map“ for every roll of produced textile

Implementing an in-line quality control system into the production of NCF
Outline

1. Introduction and Motivation
2. Approach for a quality control system
3. Machine modifications
4. Investigation on the pressure roll
5. Conclusion and Summary
Approach for a quality control system

Development of actuators

Development of sensors

Model-based control
Approach for a quality control system

Closed loop control
- Combination of all sensor data
- Feedback loop to adjust pressure roll
- Documentation of all data
 → Creation of error map
Outline

1. Introduction and Motivation
2. Approach for a quality control system
3. Machine modifications
4. Investigation on the pressure roll
5. Conclusion and Summary
Machine modifications

Light Barriers

- Breakage of reinforcing fibers

- Breakage of warp knitting fibers
Machine modifications

Detection systems

• Areal weight detection

• Fiber misalignement detection

X-Ray Sensor

Camera 1

DSP-Box

Camera 2
Machine modifications

Pressure Roll System

- Camera 1
- Pressure Roll
- Pressure Valve
Machine modifications

Overall System

Control Cabinet

Mobile Panel

LabView PC
Outline

1 Introduction and Motivation

2 Approach for a quality control system

3 Machine modifications

4 Investigation on the pressure roll

5 Conclusion and Summary
Investigation on the pressure roll

Load cells
- Load cells are installed
- A pressure measurement film is used to investigate the influence of the pressure roll and the homogenizing effect
Investigation on the pressure roll

Pressure measurement film
- Curved irregular characteristic
- Conclusions about height and width of thick spots can be drawn
- But: gaps need to be detected without influence on the textile
Investigation on the pressure roll

Results

<table>
<thead>
<tr>
<th>300 g/m² – low speed</th>
<th>600 g/m² – low speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure roll: low tension</td>
<td>Pressure roll: high tension</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Without pressure roll</th>
<th>With pressure roll</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

1. Introduction and Motivation
2. Approach for a quality control system
3. Machine modifications
4. Investigation on the pressure roll
5. Conclusion and Summary
Conclusion and Summary

- High economical use of quality control system for NCF-production
- Homogenizing effect of the pressure roll
Thank you for your attention!

Contact:

Dipl.-Ing. Dipl.-Wirt. Ing. Marcel Haeske
Phone: +49 (0)241 80 – 24 738
Fax: +49 (0)241 80 – 22 422
E-Mail: marcel.haeske@ita.rwth-aachen.de

Partner:

This IGF-project “Auto-NCF“ 494 ZN of the Forschungsvereinigung Forschungskuratorium Textil e.V., Reinhardtstraße 12-14, 10117 Berlin is funded via the AiF by the Federal Ministry for Economic Affairs and Energy (BMWi) according to a decision of the German Federal Parliament.